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Infrared Divergence of the Angular Momentum of Bremsstrahlung 
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In a private communication, Biedenharn pointed out that the statistical independence of photon emission 
in the infrared limit in a bremsstrahlung scattering process may lead to a logarithmically divergent angular 
momentum for the radiated photons and the scattering system. It is shown that the expectation values 
of these angular momentum vectors are free of infrared divergence, but the expectation values of their 
squares are infinite due to an infrared divergence. The physical significance of this result is that an incident 
electron of arbitrarily large impact parameter can scatter from a finite range potential. This may be ascribed 
to the physical structure of the electron, namely its photon cloud. 

I. INTRODUCTION 

IT is known that for a bremsstrahlung scattering 
process, the probability of emitting n photons 

(n = 0, 1, 2, • • •) of any mode obeys a Poisson distribu
tion function in the limit of soft photon emission. This 
is usually interpreted to mean that soft photon emission 
occurs in a statistically independent way.1 Biedenharn2 

gave a simple intuitive argument that this statistical 
independence interpretation may lead to a logarithmi
cally divergent angular momentum transfer by the 
radiated photons. His argument may be summarized 
as follows: Consider for definiteness electron scattering. 
For sufficiently low-energy electron scattering, the 
dipole mode of radiation is dominant. This means that 
each emitted photon transfers with it one unit of angular 
momentum independently of its energy. In addition, 
the number of unobserved soft photons is infinite (being 
proportional to fdk/h). If it is assumed that the 
angular momenta add randomly, the average angular 
momentum transferred by the photons is also infinite 
(logarithmically divergent). This appears contradictory 
because an infinite angular momentum reaction on the 
scattered electron is not observed. Thus he concludes 
that the statistical independence interpretation of the 
Poisson distribution may be an oversimplification. 

As may be seen, Biedenharn's argument is statistical. 
It does not take into account any virtual photon effects. 
Of course, virtual photons cannot contribute directly to 
the angular momentum of the radiated photons. It is 
conceivable, however, that the damping effect of virtual 
photons to the scattering amplitude, which cancels out 
the infrared divergence of the scattering cross section 
coming from real photons,3 may also damp down the 
average value of the angular momentum transfer by 
the emitted photons. It is thus of interest to calculate 
the expectation value of angular momentum in the 
scattering state. In Sec. II, the expectation values of 
the electromagnetic field angular momentum and the 

* Supported in part by the U. S. Atomic Energy Commission. 
1 R. J. Glauber, Phys. Rev. 84, 395 (1951). 
2 Professor L. C. Biedenharn (private communications). 
3 D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 

(N. Y.) 13, 379 (1961); further references may be found in that 
paper. 

total angular momentum vectors in the scattering state 
together with their squares are calculated. The physical 
meaning of the results of Sec. II is discussed qualita
tively in Sec. I l l , and a summary and some concluding 
remarks are given in Sec. IV. 

II. CALCULATION OF THE ANGULAR MOMENTUM 

For definiteness, we confine our attention to the 
process of electron scattering from a potential. So that 
the potential itself cannot be responsible for the occur
rence of high angular momenta, it will be chosen to 
have a definite, small spatial extension. 

The starting point of our discussion will be a re
capitulation of the main results of an analysis of the 
infrared divergence.3 For those readers not familiar 
with a general treatment of the infrared divergence, the 
most important fact to keep in mind is that infrared 
effects depend only on the large scale features of the 
charge-current distributions. This has the consequence 
that infrared contributions can always be factored out 
and depend only on incident and final momenta of 
charged particles. 

It will be convenient to describe the process in the 
momentum representation for the electron. The repre
sentative of the initial state, <f> = | p,0), is then 

<p'kM(P'-p)|o>, (2.1) 

corresponding to an electron of momentum p and no 
photons; |0) is the photon vacuum. The final state is 
then S<j>, and the representative of the scattered part 
of the state is 

<p'ls-ik>=o(p',p)|o>, (2.2) 

where 0 is an operator which produces the superposition 
of photons in the final state. It may be expressed in 
the form 

cc 1 

n=0 fll 

X /-/s <Pkt 

( -2«)5(e- I>; ) 
(2a.*)1'2 « 

X/*.(ki,- • -k„)at(kx)- • -at(kn), (2.3) 
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where 

B 
(2TT)3J k2-\K2pf-k-k2 2p-k-k2/ ' 

The meaning of the various factors in (2.3) will now 
be described. The matrix element for scattering with 
production of n real photons of specified momenta is 
jjLne

aB. The factor exp(aB) is independent of n and con
tains all the infrared-divergent contributions from vir
tual photons,3-4 while virtual photon contributions which 
are not infrared divergent are contained in /zn. To keep 
separate contributions finite we use a photon mass X; 
we may then study the infrared divergence by seeing 
how various quantities behave as X—*0. The (n=0) 
term in the sum is by definition (—2xi)5(e)/xo. The 
aMt(k) are creation operators for photons; for simplicity 
the polarization indices Qn) have been omitted from 
(2.3). These operators have commutation relations 

[a|1(k)>a,t(k,)] = M ( k - k O , (2.4) 

where JJL, V— 1, 2, the two transverse polarization direc
tions. The (1/w!) occurs in (2.3) because each con
tribution to the state vector occurs n\ times (jin is 
symmetric). Conservation of energy is contained in the 
factor (— 27ri)5(e—Sw*), where e=E—E/ is the elec
tron's energy loss and co; is the energy of the ith. photon. 
The dependence of \xn on p, p', electron spin state, etc., 
has been suppressed. 

The infrared structure of \xn must now be discussed. 
As the infrared contributions depend only on the large 
scale distributions of current, they are readily identified 
and may be factored out. Carrying out an analysis 
similar to that given in Sec. 2 of Ref. 3, applied 
there to pn(ki,-•-,kn) and pn(ki,-•-,kn), we find for 
/x»(ki,- • -,k») the expansion5: 

1 
fin(ki"-kw)= L £ 

perm r=0 r\(u—Y) ! 

X [ I I ZXk^Yn-Xkr+l- • • K) . (2.5) 

Sperm is the sum over all permutations of the mo
mentum vectors k*, i— 1, • • •, n. Upon integration, the 
square of r(k») leads to an infrared divergence; for 
photon polarization e, T is given by 

r(k)= 
(2*); 

/e-p ' e-p\ 
(2.6) 

where k'p = coE~ k«p. Integrals containing factors of 
jj are not infrared divergent. We may regard (2.5) as a 

4 The present discussion is similar to that of Sec. 2 of Ref. 3 
above. The same notation is also employed. Familiarity with that 
section of Ref. 3 is assumed. 

5 It is more convenient for our purposes to treat the operator Q 
than to treat the electron scattering cross section as is the case in 
Sec. 2 of Ref. 3. 

decomposition of fxn into contributions where r photons 
are infrared and n—r are not. 

To avoid the complication of the energy-conserving 
d function inside the sum of (2.3), we make the formal 
substitution 

$ ( e - E c O , ) - > $ ( € - - # e m ) , ( 2 . 7 ) 

where Hem is the Hamiltonian of the radiation field; 
it is understood that 12 acts on the vacuum. This sub
stitution is to be understood as a convenient short
hand ; all the manipulations that will be made could be 
done by alternative methods without using operators 
as arguments of 5 functions. With this substitution, the 
sum over infrared contributions in (2.3) may be carried 
out explicitly, with the result 

tt\0) = eaB(-2>iri)5(6-Hem)ect 

x[~7o+i;— /*••• fym(ki---K) 

Xllat(k0—— , (2.8) 

where 

ct=/*2rM(k)aMt(k)——. 
J M=l (2C0)1 '2 

The operator Ct creates a photon in the "bremsstrah-
lung mode" appropriate to the scattering of the electron. 
If the consideration is restricted to very small energy 
loss by the electron, which is the situation of primary 
concern here, then only the 70 term in (2.8) is of im
portance.6 In this limit, the scattering state may be 
written as 

fi|0) = ^(-27r^(e- iy em)^ t7o(p , ,p) |0) . (2.9) 

The factor 7o(p',p) contains the contribution to the 
scattering amplitude due the basic potential scattering 
process as well as the noninfrared virtual photon con
tributions. Sometimes it is convenient to express energy 
conservation in a different form. One uses 

and 

to write 

where 

5(X)=(l/27r) J e*Hy 

Femat(k) = at(k)(iyem+co) 

- 0 0 

Q | 0 ) = - i e a B / <2y^exp(<?t)7o|0), (2. 
J —00 

JQ M-l (2CO)1 '2 

6 The discussion to follow may be still carried unchanged in 
essentials even if we do not leave out these terms. If the higher 
corrections (m>l) are retained, they lead to contributions of 
order em since each photon's energy is bounded by e. 
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Equation (2.10) may also be derived directly from (2.3) 
without the intermediate step (2.7). 

The scattering probability may be written from (2.9): 

<l>=<0|Qt(p',p)Q(p',p)|0> 

= (2,r)2(01 e«Becy0*8(e- Bm)S ( « - ffem)eaBectTo |0}. 
(2.11) 

The product 8(e—HGm)Xd(e—Hem) may be replaced 
by the product 8(0)XKe-Hem). The factor 5(0) is the 
usual one appearing in transition probability calcula
tions. This factor is disposed of by the usual methods 
in the calculation of the scattering cross section and of 
angular momentum expectation values. The factor 
8(e—Hem) is then re-expressed as in (2.10) in terms of a 
y integration. Using the identity 

exp(C) exp(Ct) = exp(Ct) exp(C) exp{[C,Ct]}, (2.12) 

(2.11) may be reduced to the form given in Ref. 3 

( l ) = 27r5(0)exp[2o :( JB+5)]|7o|2/ dye^* (2.13) 
J —oo 

5(p',p)= 

D(v',v,y)=— 
4 A 0 

— ) (e-**y— 1 ) — . 

(2.14) 

(2.15) 

-B(p',p) and Z)(p',p,y) are defined as follows: 

Sir2Jo\k'Pf k-pJ co ' 

•Pl_ * ^2 

\k-p' k-p/ 

The real photon infrared divergence is isolated in B, 
while D is finite. I t is seen from (2.13) that the real 
photon infrared divergent contribution to the electron 
scattering cross section is also factorable as a multi
plicative exponential factor {exp[2aZ?(p',p)]}. Further, 
the infrared divergences of real and virtual photons 
have cancelled in the observable cross section. The func
tions B and B are separately divergent, but their sum 
is finite as X —> 0. 

The angular momentum operator for the electro
magnetic field is 

Me 
- / 

xXS(x,t)d3x 

(2.16) 

• / 

= / x X ( E x H ) ^ , 

where x is a radius vector, S(x,/) is Poynting's vector, 
and E and H are the electric and magnetic field vectors, 
respectively. The expression (2.16) is expressible in 
terms of the creation and annihilation operators 

M e * = - * /"CE a M t ( k ) ( k X V k ) a M ( k ) + a t ( k ) X a ( k ) ] ^ , 
J M=I 

(2.17) 

a(k) = Ea,(k)e,(k). 
J U - 1 

The first term of (2.17) may be spoken of as the orbital 
angular momentum and the second as the spin term. 

The expectation value of Mem in the scattering state 
may be calculated by using (2.9), (2.10), and (2.17). 
We may write 

<Mem) = (0|l2t(p,,p)Mem12(p,,p) |0> 

= ( 2 ^ ) V ^ | 7 o | 2 < 0 | ^ 5 ( e - # e m ) 

XM e m5(e-#e r a)exp(Ct)iO>. (2.19) 

The operator Mem commutes with Hem and can be 
moved to the right of 5(e—Hem) in (2.19). Then the 
product 8(e—Hem)Xd(e—Hem) is replaced by d(0) 
X8(e—Hem) as before. The state vector to the right is 
then written in the form (2.10). Thus, (2.19) is reduced 
to 

(Mem) 
/•OO 

= 2 7 T 5 ( 0 ) ^ B | T O | 2 / ( 0 | e x p ( C ) M e m e x p ( C t ) | 0 y ^ ^ 

= 2wd(0)e2<xB\y0
12 ^ e x p { [ C , C t ] } 

X [ C , [ M e m , C t ] ] ^ . (2.20) 

The reduction of (2.19) is accomplished with the help 
of (2.12) and the following relations: 

Mem exp(Ct) 10) = [Mem , exp(Ct)] 10) 

= exp(Ct)[M e m ,Ct] |0) 

and 

(01 ̂ [Mem,Ct] 10) = <01 [C,[Mem,Ct]] 10). 

The factor [C,[M e m ,Ct]] is a C number. Writing out 
(2.20) in detail, we find 

<Mem)=-i 

where 

d*k 2 
—ErM(k)(kxvk)rM(k) (2.21) 

+ T(k )xT(k) ]< l> | „ , 

T(k) = ETM(k)eM(k). (2.22) 

I t is immediate from (2.21) that the spin contribu
tion is identically zero. Integrating the orbital angular 
momentum term by parts while recognizing that 
(kXVk)o; = 0 and that the surface term is zero, one 
shows that the integral is equal to its negative; hence, 
it must be zero. Therefore, it follows that the expecta
tion value of the angular momentum vector of the 
radiated photons in the scattering state is zero. 

The expectation value of Mem
2 in the scattering state 

can be now calculated using the same techniques. 

(MeJ)= <01 S2+(p',p)Mem
20(p',p) 10) 

(2.23) 

J —CO 

(2.18) =€2«Bl-yo|22ir5(0) / <fye'»«<0| ecMem
2 exp(£t)|0> 
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The last factor of (2.23) may be reduced as follows: 

(0 | e c M e m -M e m exp(e t ) |0 ) 

= <0|[C,Me m>exp{[C,Ct]} 

Xexp(5t)exp(C)[M e m ) Ct] |0) 

= {0 |{ [ [C ) M e m ] ) ^ t ]+[C ) M e m ]} 

• {[C,[Mem ,(?tJ]+[Mem ,<?t]} |0> exp{[C,£t]} . 

However, [C,[Mem ,Ct3] is zero, as was shown in calcu
lating the expectation value of Mem. Hence, this reduces 
to 

(01 [C,M e m]- [M e m ,Ct] 10) exp{[C,Ct]} 

= exp{[C,Ct]}[[C,Me m],-[Me m ,<?t]]. 

In this reduction note that [M e m ,Ct] is a creation opera
tor while [C,MenJ is an annihilation operator. The 
expectation value of Mom

2 then becomes 

<Mem2) = — Z{[(kxvkr,(k);p 
CO M = l 

+ 77(k)}<l )^ e _ w . (2.24) 

Equation (2.24) may be viewed as the sum of the 
expectation values of the square of the orbital and spin 
terms. The interference term between the spin and 
orbital angular momentum parts can be seen to be 
zero. The spin is, for a given k, in the direction of k 
while the orbital angular momentum is perpendicular 
to k. Consequently, the dot product is zero. The con
tribution of both the orbital and the spin angular 
momentum parts to (2.24) is infrared divergent as is 
easily seen by examining the expression of 7\ (k) for 
small k (or w). Analogous analysis can be carried out 
for the case where scalar mesons of vanishing mass, 
instead of photons, are being emitted. The spin term 
is zero for this case; however, the expectation value of 
the square of the angular momentum for the emitted 
mesons still contains an infrared divergence; a fact 
which emphasizes that the divergence is not caused by 
the photon's spin. 

I t is worth noting, at this point, that the operator 
for emitting a photon C* depends on p', the momentum 
of the scattered electron. Consequently it contributes 
to the scattered electron's angular momentum. Further, 
Mem is not a constant of the motion. Thus instead of 
calculating the expectation value (Mem), let us calculate 
the expectation value of the total angular momentum 
and its square. In the representation being used, the 

total angular momentum operator is 

M tot=M6m+(-ip /X^). (2.2S) 

The second term on the right-hand side of (2*25) is the 
orbital angular momentum operator for the scattered 
electron* The electron spin does not lead to infrared 
divergences and will not concern us here. The second 
term on the right-hand side of (2.25) will be denoted 
for brevity by Lp>. The corresponding operator for the 
incident electron is denoted by L p ( = — ipX Vp). 

I t will be helpful in performing the calculation of M tot 
and Mtot2 to note, for a spherically symmetric potential, 
the identity 

(M e m+Lp,+Lp)0|0> = 0. (2.26) 

We shall assume from here on that the scattering po
tential is spherically symmetric; this assumption is a 
simplifying rather than a crucial one. The identity 
(2.26) is a consequence of the rotational in variance of 
the S matrix and can be verified directly for our state 
(2.8). I t may be viewed in terms of infinitesimal rota
tions to mean that an infinitesimal rotation of the inci
dent particle, scattered particle, and the emitted radia
tion leaves the scattering amplitude unchanged. 

We are now able to write 

<0|OtMtotO|0>=-<0|OtLpl2|0>, 

which is in turn equal to 

(2.27) 

<M tot)= ~ Lp<0|Qt(p',Pl)a(p',p) |o>| P1_p 

--27r5(0)Lp^^(p'-Pi)+ s^'P)]To*(p , ,Pi)7o(p /
Jp) 

/

°° r /• 2 

dye^exv] / Z TM(k,p',p 
LJ M=I 

i ) 

dzk~\ 
Xr„(k ,p ' ,p)<r**— . (2.28) 

2coJ 

The introduction of pi is a trick so that the differentia
tion may be carried out after the expectation value is 
worked out. We now observe in (2.28) that 

rM(k,p' ,P l)rM(k,p' ,p) 

=i[r^k,^P l)+r^k,p' ,P)] 
- iCr^^^pO-r^k ,^ ,? )? , (2.29a) 

while 

[r , (k ,p ' , P l ) -r M (k , P ' ,p ) ] 2 = 7y(k,p„p) . (2.29b) 

Substituting these into (2.28) and recalling the defini
tions of S(p' ,p) and D(p',p,y), we find for (2.28) 

(Mtot)- - 2 T T $ ( 0 ) L P exp{a[5(p ' ,p 1 )+5(p ' ,p 1 )+5(p , , p )+J3(p , , p ) ]} 

d3,6«tfV/2D(^pi,tf)+m 
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The quantities (B-\-B) and D are finite so only the last 
exponential factor contains an infrared divergence. The 
contribution to angular momentum from this term is 
proportional to 

L p exp[-a5(p ,p i ) ] p i = s p 
= ~«(L1JI(p,p1))exp[-a5(p,pi)]|p1,p. 

Since 5(pi ,p) is some function of p r p , L2>S(pi,p) is 
proportional to (piXp). Thus when pi is set equal to p, 
the result is zero. This means that (2.28) is free of 
infrared divergence, which in turn means that the ex
pectation value of the total angular momentum in the 
scattering state is free of infrared divergence. Since 
Mem is zero, it follows that M t o t= W which means 
that the expectation value of the scattered electron's 
angular momentum in the scattering state is free of 
infrared divergence also. 

The calculation of the expectation value of Mtot2 is 
performed in exactly the same way as that of Mtot. 
The net result for M tot

2, which corresponds to (2.28) 
of Mtot, differs from (2.28) by having Lp

2 in front of 
the square brackets instead of — L^. That is, 

<Mtot2) 

= 2x5(0) V exp{atB+B+B+B2)yo*yo 

xf ^ ^ i ^ + 1 / 2 i ) + 1 / 2 2 ) e x p [ - a 5 ( p 1 , p ) ] p i = p . (2.30) 

As in (2.28), any possible infrared divergence in (2.30) 
can only come from Lp

2 acting on the last exponential 
factor; the noninfrared terms are indicated somewhat 
symbolically. Consider 

Lp
2exp[-aj§(pi,p)]|p1=3p. 

Since pi is to be set equal to p after Lp
2 acts on the ex

ponential, it is sufficiently accurate to consider B(php) 
for small (p—pi). Let p—pi=q ; then 

o£(p! ,p)= (aq2/37rw2) ln(e/X)^a2q2 , (2.31) 

where e is the electron energy loss in the scattering 
process and X is the photon mass. Inserting this into 
(2.30), we find 

Lp
2 exp[-a2?(pi,p)]|p1Mp = 4a2p2, 

which is logarithmically divergent as X—>0. Thus, 
Mtot2 is infrared divergent. Similar calculations may be 
undertaken to show that Lp>

2, the expectation value of 
the square of the angular momentum of the scattered 
electron, is also infrared divergent. 

III. PHYSICAL BASIS OF THE DIVERGENCE 

We saw in the preceding section, among other things, 
that the expectation value of the square of the total 
angular momentum in the scattering state is infrared 
divergent. Since that calculation involved a somewhat 

detailed knowledge of the infrared divergence problem, 
it is valuable to give a more physical discussion indicat
ing the presence of the large angular momentum. This 
discussion will also indicate why a large angular mo
mentum reaction on the electron is not observed 
experimentally. 

I t will be necessary to review some of the results of 
the analysis of the infrared problem.3 The functions B 
and B are both infrared divergent, and we will con
centrate our attention here on the infrared dependence. 
Let the angular integral occurring in (2.14) be called 
%A, so that 

dB(p\p,e)/de = A/2e. (3.1) 

This same factor A is associated with all the infrared 
divergences. For example, 

5(p,,p,e) = Mln(«A)+---, (3.2a) 

£(p',pHfc4 1nX+"-, (3.2b) 

where the dots indicate terms which remain finite as X 
or € tend toward zero. The function D may also be ex
pressed in terms of A : 

re dk 
D = aA _ ( « r * * - l ) . (3.3) 

Jo k 

The y integration in (2.12) yields3 

(2iraA/e)F(aA)9 (3.4) 

where F is very close to unity except for ultrahigh 
energies. The (aA/e) dependence of (3.4) is char
acteristic of single photon emission. The effect of 
multiple emission is contained in 

exp (2a5 ) - ( e /X)« A X(- - - ) . 

I t is seen that this factor makes the differential cross 
section for energy loss slightly less singular than e~l 

as 6—>0. In fact, one may now define a cross section 
with energy resolution 

r*Eda 
v(AE)= / — de 

Jo de 

= a0 e x p { 2 a [ ^ ( p / , p ) + 5 ( p , , p , A E ) ] } F M ) , (3.5) 

where <TQ is the elastic scattering cross section, including 
the effects of virtual noninfrared photons. Now let us 
split this cross section up into various parts according 
to the number of photons which have been emitted. 
This is not an observable decomposition since the 
photons are not actually detected. Since B refers to 
real photons, the desired cross section is 

an(AE) = (1/n!) {2aBye2«BF(aA)<ro ( . 
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Thus the real photons are emitted according to a 
Poisson distribution; notice that this is true for detec
tion with energy resolution rather than for detection 
with definite energy loss. In the case of nonrelativistic 
incident particles, this becomes 

<rn(AE) = (1/n!) (2a2q2)^-2fl2*V(A£), (3.7) 

where a2 is defined in (2.31) and q2 is now given by 
2p2(l — cos0), where 6 is the scattering angle. Equation 
(3.7) is plotted as a function of 6 in solid lines (Fig. 1) 
for n=0, 5, 10, and 20. A convenient photon mass (as 
a lower cutoff) has been used. The dashed line shows 
the cross section for electron scattering when the con
tributions from all photon channels (w=0, 1, 2, • • •) are 
added. This cross section is independent of the photon 
mass, due to the cancellation of infrared divergent con
tributions from virtual and real photons, as was pointed 
out earlier. However, the solid lines of various photon 
channels become infinitely narrow as the photon mass 
is made to go to zero. Simultaneously, the height of the 
curves is suppressed down to zero (except n—Q). Thus 
the infinite narrowing of these curves suggests the 
presence of large angular momentum for each "number 
of photons" scattering channel. When the contributions 
to the square of angular momentum from all photon 
channels, properly weighted, are added, the result is 
infrared divergent. 

Since the incident plane-wave state used in the calcu
lations contains arbitrarily large angular momentum 
components, there is no violation of angular momentum 
conservation. In fact, one can show explicitly with the 
help of the optical theorem that the elastically scattered 

cos 9 

FIG. 1. The partial cross sections for electron scattering at 
angle 0 with emission of exactly n photons (n — 0, 1, • • •) of any 
energy and momentum (subject to total energy conservation) are 
plotted as the solid curves for representative values of n. A con
venient photon mass has been used. The cross section for scatter
ing with emission of an arbitrary number of photons (2n<r») is 
shown as a dashed line. For reasonable energy resolution, it is 
very close to the cross section in which all radiative corrections are 
ignored. 

FIG. 2. A schematic dia
gram showing an incident 
wave packet on a scattering 
region. The impact param
eter is chosen so that the 
wave-packet configuration 
does not overlap the scat
tering region. 

INCIDENT WAVE PACKET 

SCATTERING REGION 

wave (n=0 in Fig. 1) interferes with the incident wave 
in such a way as to account for over-all angular mo
mentum conservation. On the other hand, it may be 
argued that since the calculations of Sec. I I are carried 
out for a fairly general potential, then for a potential 
of finite range a finite section of the plane wave passes 
through the scattering region. This finite section con
tains only finite angular momentum. The question thus 
arises: Why is there infinite angular momentum, inde
pendent of the potential, in the scattering state? The 
point to observe is that the wave function of the incident 
electron represents its center-of-mass motion. The phys
ical electron, with a core (bare electron) and a photon 
cloud, has internal structure of infinite extent (due to 
the zero rest mass of the photons). The fluctuations in 
the photon cloud cause fluctuations in the core due to 
recoil. Hence an incident electron whose center of mass 
does not pass through the scattering potential can still 
interact through its extended core. This can produce 
scattering at arbitrarily large impact parameter of the 
center of mass, which leads to a large angular momen
tum in the scattering state. 

To illustrate the above remarks further, let us con
sider the scattering state with a wave-packet amplitude 
used to describe the incident electron. This state now 
takes the form 

-i / dy I d?pi<l>($i)eaBW'*i>eivti 

XexpC^t(p>1)]7o(p , ,Pi) |0>. (3.8) 

<£(pi) is the incident wave packet amplitude in the 
momentum representation. The scattering probability 
may be obtained by taking the inner product of (3.8) 
with itself. Using the same techniques employed in 
Sec. II , one finds 

2ir\ e^dy j ••• I h(Ex-E< 

X 7 O * ( P , , P 2 ) 0 * ( P 2 ) T O ( P , , P I ) ^ ( P I ) ^ ( P , ' P I ) + Q ( P ' - P ^ 

X e x p [ - J J g ( p 1 , p 2 ) > - 1 / 2 I ) ^ i ' P 2 ) ^ 1 ^ 2 > (3 < 9) 

The function <2(p'>p) is defined by 

Q ( p ' , p ) = a [ 5 ( p ' , p ) + 5 ( p / , p ) ] + i D ( p ' , p , ^ ) . (3.10) 
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(?(P'>P) is free of infrared divergence. Let us choose the 
incident wave packet to have an impact parameter p 
relative to the center of the scattering region (cf. 
Fig. 2). This wave function <j> may be written in terms 
of a wave-packet amplitude <£o whose impact parameter 
is zero. Thus, 

*(p) = e*->0o(p). (3.11) 

Let q=pi—p2. Making the approximation of (2.31) 
for 5(pi ,p2) , one then writes (3.9) 

X0o*(pi+q)0o(pi)eQ(P''P2
)- f^ (P /'Pi )-1/2 i ) (Pi'P2^ ) 

Xexpfo- q)e-*#(Ppi<Pq. (3.12) 

We assume that since a is very large for small X, one 
can always choose the wave-packet spread Ax to be 
small relative to a. Then the Gaussian factor exp(—a2q2) 
limits the values of q in such a way that the q depend
ence of 0o*(pi+q), 7o*(p',p2) and <2(p',p2) may be 
neglected. With this approximation, (3.12) becomes 

2TT / dyeiV€ I ••• / |0o(pi)|2e2Q(P,'Pi) 

X e x p [ - (9
2/4a2)] | Yo(p',Pi) |2 e x p [ - ( aq -* 9 / 2a ) 2 ] 

X2m5(2p1-q-q2)d*p1d*q, (3.13) 

where we have used 

£ i - £ 2 = (p i 2 -p 2
2 ) /2w= ( 2 P l . q - q 2 ) / 2 w . 

Because of the 8 function the q integration is really two 
dimensional, this integration is easily carried out and 
we find 

2a2 
• e x p [ - (p2/4a2)] 

/

00 „ m 

-oo J P\ 

exP2e(p , ,p1) 

X | Y O ( P ' , P I ) | 2 | * O ( P I ) | 2 # # I . (3.14) 

Now let us take experimental conditions such that 
the incident beam is reasonably well specified with a 
mean momentum pi0 (compatible with the spatial ex
tension of the packet being small compared with a). 
Then (3.14) may be approximated by 

2a2£i° 
e x p [ - ( 9 2 / 4 :a2)]f dye^QC^PiO) | 7 o (p ' ) P l o) |2 

with 

= - — — e x p [ - (PV4a 2 ) ] -^ , (3.15) 
4:wa2pxQm de 

e=E1
Q-E'. 

I t is seen from (3.15) that the scattering probability 
of a wave packet of a given parameter decreases like 

exPC~~ ( P 2 / 4 # 2 ) ] as p increases. For calculating the scat
tering cross section, one has to consider a beam of 
infinite extent of uniformly distributed wave packets 
incident on the scattering region. That is, one has to in
tegrate (3.15) over wave packets of all impact param
eters ; the scattering cross section is then 

1 da da 
e x p [ - (p2/4a2) ] — 2irpdp= —. (3.16) 

o 47ra2 de de 

2-irpdp is the density measure of the incident wave 
packets in a ring of radius p and width dp, in the plane 
perpendicular to the direction of the incident beam. 
The factor pi°m introduced in going from (3.15) to 
(3.16) is essentially a Jacobian; Eq. (3.15) gives the 
probability of scattering into an element {dzpr) of mo
mentum space and (3.16) gives the probability for 
energy range de. We have recovered the same result for 
the observable cross section which was derived origi
nally by considering an incident plane wave. I t is free 
of infrared divergence even though the scattering proba
bility for given impact parameter does depend on X. 

The expectation value of the square of angular mo
mentum in the scattering state may be obtained, with 
the help of the above remarks, straightforwardly. The 
square of the angular momentum of a wave packet 
<j>(pi) of impact parameter p may be approximated by 
p2^i02. Thus the expectation value of the square of the 
angular momentum in the scattering state for given 
impact parameter may be obtained by multiplying 
p2pi02 by the scattering probability. Summing this over 
all impact parameters, we find 

r00 1 da 
e x p [ - (pV4a2)]-(p^)227rp</p 

J o 47ra2 de 

= 4 ( a i > « 2 - , (3.17) 
de 

which confirms the result obtained in the previous 
section. 

IV. SUMMARY AND RESULTS 

We have investigated the angular momentum associ
ated with bremsstrahlung and found it to be infinite 
due to an infrared divergence, as had been conjectured 
by Biedenharn. This result applies either to an incident 
plane wave or an incident beam of wave packets which 
are uniformly distributed in the transverse plane. As 
Biedenharn points out, it seems paradoxical that a 
scattering electron can transfer an infinite angular 
momentum to the electromagnetic field and not experi
ence a drastic modification in the angular dependence 
of its scattering cross section. The paradox is resolved 
by noting that if one detects only the electron, the cross 
section is really a sum over an infinite number of inco
herent channels corresponding to emission of different 
numbers of photons. Even though each channel has a 
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rapid angular dependence, as indicated in Fig. 1, the 
complete cross section has an angular dependence which, 
for reasonable energy resolution, does not differ quali
tatively from the cross section in which all radiative 
corrections are ignored. 

One may raise the question whether it is possible, in 
principle, to devise an experiment in which this angular 
momentum would be observable. No method of doing 
this has occurred to the authors. I t would be impossible, 
for example, to devise an experiment in which one 
could say with certainty that exactly n photons have 
been emitted by the scattering electron. The trouble is 
that any experimental arrangement will always admit 
the possibility of emission of an arbitrary number of 
very soft photons which will escape detection. The 
infrared divergence (logarithmic dependence on the 
photon mass X) will then always cancel out leaving a 
dependence on the resolution of the various detectors. 

In spite of these remarks, there is a sense in which 
the angular momentum manifests itself. With suffi
ciently good energy resolution (small AE), the radiative 
corrections do modify the angular distribution. If the 
fine structure constant were of order one or greater, 
we would be quite conscious of this effect and its con
nection with angular momentum. However, with reason
able experimental values for AE and the actual value 
of the fine structure constant, these corrections are 
small and their connection with angular momentum 
has previously been overlooked. 

As we have seen, the infinite angular momentum is 
really a manifestitation of something more basic, the 
internal structure of the physical particle. We have 
seen how it is possible for the particle to scatter even 
though its wave packet entirely misses the potential. 
The scattering probability for a given impact parameter 
p is proportional to ar2 exp(—p2/4a2), where a, given 
by (2.31), goes to infinity as X tends to zero. This 
means that a collimated beam of particles, where the 
width of the beam is small compared to a, would not 
be scattered from a potential. However, there is no slit 
system which could provide such a collimated beam. 
For, if a wave packet were headed toward the opening 
of a slit, it would have only a very small chance of 
getting through because of the long-range interaction. 
On the other hand, a wave packet directed into the 
material away from the slit opening would have a 
small chance of getting through corresponding to the 
bare particle part of the physical particle being at the 
slit. 

Since the photon mass is actually zero, the remarks 
of the preceding paragraph seem to introduce hopeless 
complications into the realistic description of a scatter
ing process, including the questions of beam formation, 
detection, etc. As we will now try to argue, this is a 
consequence of an over-idealization of the scattering 
process. We usually try to conceive of the scattering 
process as being from a physical one-particle state to a 
state consisting of a superposition of physical particle 

states. Apparently this point of view cannot be main
tained when one of the interacting fields has zero mass, 
as in quantum electrodynamics.7 

Let us turn to the semiclassical description of the 
bremsstrahlung process. This is usually thought of as 
a shaking off of the proper field of the incident particle 
together with a radiation field to compensate for the 
fact that at the instant after scattering the particle 
cannot have developed its final proper field. We want 
to fix our attention on the contribution to the amplitude 
associated with the final motion of the particle. At the 
first instant after scattering, the radiation field is the 
negative of the proper field, canceling it out at large 
distances. As the electron moves along the radiation 
field moving with velocity c begins to disengage from 
the proper field so that after an infinite time the two 
are completely separate. However, at any finite time, 
the outer regions of the proper and radiation field must 
still cancel since the information about the scattering 
can propagate out only with the speed of light. From 
the quantum-mechanical point of view, this means that 
the physical particle states cannot be attained in a 
finite period of time. The lowest Fourier components of 
the radiation field are not disengaged. On the other 
hand, if the photon had a mass, the physical electron 
could become completely developed within a finite time 
after scattering, since the information that scattering 
has occurred would need to propagate only a finite 
distance. In considering a realistic scattering situation, 
we have to recognize that the incident electron has 
scattered at some finite time in the past, even if the 
time is considered very large from the microscopic 
point of view. Thus we never deal with completely 
free-incident particles. We may look on the incident 
particle as "semidressed," or more precisely as repre
sented by a superposition of states whose spectral 
decomposition is concentrated very close to, but not 
quite on, the particle's mass shell.7 

Fortunately, we need not deal with these details 
every time we discuss a scattering process. The ob
servable cross sections are not extremely sensitive to 
the past history of the incident particle. In effect, the 
previous scatterings and detection provide an infrared 
cutoff in the scattering of interest. However, it is 
known that the observable results of any experiment 
are insensitive to the details of the infrared cutoff 
provided that cutoff is at a low enough energy. The 
idea that a realistic description of scattering would 
include a physical infrared cutoff has also been stressed 
by Ascoli.8 Now let us estimate the cutoff as being given 
by the dimensions of the laboratory, say 104 cm. Then 
with any reasonable energy resolution, the parameter a 
turns out to be very much smaller than the electron's 
Compton wavelength, which in turn is smaller than any 
target dimensions. We believe, then, that the problem 

7B. Schroer, Fortschr. Physik 11, 1 (1963). 
8R, Ascoli, Nuovo Cimento 12, 192 (1959). 
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of the infrared divergence is a mathematical, rather 
than a physical one. 
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INTRODUCTION 

T N a previous paper1 it was shown that 

(N,0,K'\4,(x)\N+l,a,K) 

= (^+ l ) 1 / 2 / ' ^ i K'* (x i , - - - . , x^ ) 

X ^ « . K ( X , X I , - • -,xN)dxv • -dxN 

= (2w)-*W*-^-*foJ K - K') , (1) 
\N+1 / 

where 0 and a label the internal states of the N and 
N+l particle systems and K' and K are their total 
momenta. The Fourier transforms of the functions 
&,«(k), 

^ , a ( x ) = (2TT)-3/2 [fo,a(k)e*'*dk, (2) 

were shown to satisfy the set of differential equations 
(in units %—2m=l) 

N+l 
V Vi9.« (X) + S 7 f fi ,y (X)\f/y >a (X) 

= ( « « - SpWpAx), (3) 

where £a is the internal energy of the state a and the 
potentials vpt7(x) are defined by 

^ , T ( X ) = / F(x-y)fl0,y(y)rfy, (4) 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

1 M. Bolsterli, Phys, Rev, 129? 2830 (1963), hereafter referred 
to as I, 

investigation. Several discussions with Professor H. 
Suura helped clarify our ideas. We also thank 
Professor S. Gasiorowicz for helpful criticism of the 
manuscript. 

< t f A K M * W ( x ) | t f , % K > 

= (27r ) - 3 / V( K - K , ) ' x %, T (K-K / ) , (5) 

»*/y(y)= (2^)"3/2 U^Qs)e^dk. (6) 

In this paper, the asymptotic behavior of the solu
tions of (3) will be considered in detail. In particular, 
the difficulties arising from the fact that ^ ,7(x) does 
not vanish asymptotically will be resolved. I t will be 
shown that the asymptotic forms given in I go asymp
totically to solutions of the asymptotic limits of Eq. (3). 
For the case of elastic scattering, the existence of direct 
and exchange wave functions will be demonstrated. 
Integral equations for the direct and exchange wave 
functions will be derived and used to produce useful 
expressions for the scattering amplitudes for both 
elastic and inelastic processes in which either the 
initial or final state consists of a single particle plus a 
bound group. All these results will be similar to those 
described in a recent paper,2 but the discussion in the 
latter does not adequately cover the asymptotic 
properties of (3) and its solutions. 

ASYMPTOTICS 

In general, the potential ^,T(x) is of the form 

W x ) = £ W * ' K A 7 / " Z + * 0 , T ( X ) , (7) 

where 

Uf3,y(x)—>0. 

2 M . Bolsterli, Phys. Rev, 131, 883 (1963), hereafter referred 
to as II, 

P H Y S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 2B 27 A P R I L 1 9 6 4 

Asymptotic Conditions and Integral Equations for Nonrelativistic Invariant Functions* 

M. BOLSTERLI AND J. F. WALKER 
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The asymptotic behavior of the invariant functions introducted previously is investigated. I t is shown 
that there exists a "direct" invariant function and that all scattering amplitudes for single-particle pro
cesses can be expressed in terms of this direct function and the asymptotic plane-wave part only of other 
invariant functions. Moreover, only the short-range part of the potentials enters into the expression for the 
scattering amplitude. 


